For each of the distributions below, do the following:

- Find the conjugate prior distribution.
- Demonstrate that it is, indeed, conjugate. That is, show that the posterior is of the same family as the prior distribution.
- Choose values for the prior distribution and justify your choice for those values.
- Plot the prior distribution, maximum likelihood estimate (derive this and include the derivation in your write-up), and the posterior distribution.
- Find the posterior mean, posterior median, posterior mode, posterior variance, posterior standard deviation, and 95% central Credible interval for the parameter of interest.
- Propose three other prior distributions that you could justify (perhaps in discussion with classmates) and plot all four posterior distributions on the same graph.

The distributions are:

1. \[f^*_i(y_i | \Theta) = \binom{n_i}{y_i} \theta^y_i (1 - \theta)^{n_i - y_i}, \quad i = 1, \ldots, 159, \Theta = \theta \]

 (data at http://madison.byu.edu/bayes/binomial2.dat)

 The data are the date, number of at-bats \((n_i)\) and number of homeruns \((y_i)\) for Barry Bonds games in the 2001 season. A “0” indicates that a homerun was not hit during that game.

2. \[f^*_i(y_i | \Theta) = \frac{\lambda^{y_i} \exp(-\lambda)}{y_i!}, \quad i = 1, \ldots, 15, \Theta = \lambda \]

 (data at http://madison.byu.edu/bayes/poisson.dat)

 The data are 15 months worth of failures of the Los Alamos National Laboratory “fastest computer in the world”. The data represent the number of failures in one month which can be modelled with a Poisson distribution. After talking with an expert they could only say that they thought there “ought” to be no more than 10 failures in one month.
Statistics 651: Applied Bayesian Methods

3. \(f_*(y_i|\Theta) = \frac{1}{\lambda} \exp \left\{ -\frac{y_i}{\lambda} \right\}, \quad i = 1, \ldots, 141, \Theta = \lambda \)

(data at http://madison.byu.edu/bayes/exponential.dat)

The data represent lengths (in miles) of 141 major rivers in North America, as compiled by the US Geological Survey.

4. \(f_*(y_i|\Theta) = (2\pi\sigma^2)^{-\frac{n}{2}} \exp \left\{ -\frac{(y_i - \mu)^2}{2\sigma^2} \right\}, \quad i = 1, \ldots, n, \Theta = \mu \) and \(\sigma = 9 \)

(data at http://madison.byu.edu/bayes/normalmean.dat)

These data are 29 test scores for Statistics 221 Honors students for Exam # 1 (for those not familiar with this class, the exam is an extremely easy exam).

5. \(f_*(y_i|\Theta) = (2\pi\sigma^2)^{-\frac{n}{2}} \exp \left\{ -\frac{(y_i - \mu)^2}{2\sigma^2} \right\}, \quad i = 1, \ldots, n, \Theta = \sigma^2 \) and \(\mu = 87 \)

(data at http://madison.byu.edu/bayes/normalvariance.dat)

These data are 29 test scores for Statistics 221 Honors students for Exam # 1 (for those not familiar with this class, the exam is an extremely easy exam).